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POSSUM: a bioinformatics toolkit for generating numerical 

sequence feature descriptors based on PSSM profiles 

 

Supplementary Material 

 

SUPPLEMENTAL INFORMATION 

Table S1 provides a comprehensive list of a wide range of research areas and application topics 

within the literature for which PSSM profile-based features have proved to be useful. 

 

Table S1. Research topics and areas of PSSM profile-based features in the literature. 

Research Area Feature Descriptors by the Corresponding Research Work References 

Protein 

structural class 

prediction 

AAC-PSSM, DPC-PSSM, and AADP-PSSM (Liu, et al., 2010) 

AAC-PSSM, and PSSM-AC (Liu, et al., 2012) 

AAC, and PSSM (Chen, et al., 2008) 

AAC-PSSM, PSSM-AC, consensus sequence descriptors, and  

physicochemical property features 

(Dehzangi, et al., 2013) 

RPSSM, and secondary structures (Ding, et al., 2014) 

tri-gram-PSSM (Tao, et al., 2015) 

PSSM, physicochemical property features, and GO feature descriptors (Li, et al., 2014) 

EDP, EEDP, and MEDP (Zhang, et al., 2014) 

AAC-PSSM, TPC, and AATP (Zhang, et al., 2012) 

PSSM (Xia, et al., 2012) 

Post-

translational 

modification 

site prediction 

PSSM, disorder scores, secondary structures, solvent accessibilities, 

AAIndex, and AAC 

(Jiang, et al., 2013) 

AAC, AGG, BLOSUM62, charge-hyd, CKSAAP, binary profiles, disorder 

scores, KNN, and PSSM 

(Chen, et al., 2015) 
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AAIndex, physicochemical descriptors, PSSM, evolutionary conservation 

scores, CKSAAP; predicted disordered regions, predicted secondary 

structures, predicted solvent accessibilities; BP, cellular component, 

molecular function, functional domain from InterPro, pathway information, 

functional domain from Pfam, protein-protein interaction annotations; 

functional domain annotations, nucleotide-binding site annotations, disulfide 

bond annotations, post-translational modified residue annotations, active site 

annotations, natural variant annotations, metal ion-binding site annotations, 

and other binding site annotations 

(Li, et al., 2015) 

PSSM, AAC, DPC, solvent accessible surface areas, BLOSUM62, PWM, 

AAIndex 

(Bui, et al., 2016) 

binary profiles, AAC, secondary structures, solvent accessible surface areas, 

and PSSM 

(Chauhan, et al., 2012) 

PSSM, AAIndex, secondary structures, solvent accessible surface areas, and 

disorder scores 

(Zhang, et al., 2014) 

Protein fold 

recognition 

PSSM, profile-profile alignments, secondary-structure specific gap-penalties, 

classic pair and solvation potentials 

(Lobley, et al., 2009) 

Sequence and family information; sequence-sequence alignment; sequence-

profile alignment; profile-profile alignment (including PSSM), and structural 

information 

(Cheng and Baldi, 2006) 

k-separated-bigrams-PSSM (Sharma, et al., 2013) 

k-separated-bigrams-PSSM (Saini, et al.) 

PSSM-AC, and PSSM-CC (Dong, et al., 2009) 

tri-gram-PSSM (Paliwal, et al., 2014) 

PSSM (Hong, et al., 2011) 

Prediction of 

protein-protein 

interactions 

D-FPSSM, and S-FPSSM (Zahiri, et al., 2013) 

physicochemical descriptors, PSSM-AC, and PSSM-CC (Guo, et al., 2008) 

physicochemical descriptors, evolutionary conservation scores, information 

entropy, PSSM, ASA, NCa, and NCr 

(Deng, et al., 2009) 

PSSM, and predicted solvent accessibility (Murakami and Mizuguchi, 

2010) 

PSSM, and PSSM-AC (Gao, et al., 2016) 

PSSM, and k-separated-bigrams-PSSM (An, et al., 2016) 

PSSM, and solvent accessible surface areas (Melo, et al., 2016) 



 3 

Membrane 

protein 

topology 

prediction 

Pse-PSSM (Chou and Shen, 2007) 

PSSM, and IAMPC (Integrated Approach for Membrane Protein 

Classification) 

(Pu, et al., 2007) 

physicochemical descriptors, and PSSM (Hayat and Khan, 2012) 

PSSM, and secondary structures (Yan, et al., 2015) 

PSSM, AAC, DPC, physicochemical descriptors, and biochemical feature 

descriptors 

(Mishra, et al., 2014) 

PSSM, and biochemical feature descriptors (Chen, et al., 2011) 

Prediction of 

protein 

subcellular 

localization  

PSSM (Xie, et al., 2005) 

DP-PSSM (Juan, et al., 2009) 

Pse-PSSM (Juan, et al., 2008) 

PSSM, and PSFM (Guo, et al., 2006) 

PseAAC, and PSSM-AC (Wang and Li, 2013) 

Bacterial 

protein 

prediction 

 

AAC, secondary structures, solvent accessibilities, physicochemical 

descriptors, and PSSM 

(Yang, et al., 2013) 

AAC, DPC, PSSM-composition, and PSSM-AC (Zou, et al., 2013) 

AAC, DPC, and PSSM (Garg and Gupta, 2008) 

AAC, DPC, MM, and PSSM (Selvaraj, et al., 2016) 

AAC, DPC, physicochemical property features, and PSSM (Restrepo-Montoya, et al., 

2011) 

HIV 1 protease 

cleavage 

prediction 

PSSM (Jensen, et al., 2003) 

PSSM (Jensen, et al., 2006) 

geno2pheno, and PSSM (Seclen, et al., 2011) 

geno2pheno, and PSSM (Bunnik, et al., 2011)  

Protein 

disorder 

prediction 

PSSM, and BLOSUM62 (Jones and Cozzetto, 2015) 

PSSM (Jones and Ward, 2003) 

PSSM, and physicochemical property features (Shimizu, et al., 2007) 

PSSM, secondary structures, and solvent accessibilities (Becker, et al., 2013) 
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PSSM, and physicochemical descriptors (Su, et al., 2006) 

Protein 

secondary 

structure 

prediction 

PSSM (Bouziane, et al., 2011) 

PSSM, and SPSSM (Li, et al., 2012) 

PSSM (Tang, et al., 2011) 

conformation parameters, PSSM, net charges, hydrophobic and side chain 

mass 

(Huang and Chen, 2013) 

Prediction of 

DNA-binding 

sites 

PSSM (Ahmad and Sarai, 2005) 

biochemical descriptors and PSSM (Wang, et al., 2010) 

AAC, DPC and PSSM (Kumar, et al., 2007) 

physicochemical descriptors, biochemical descriptors and PSSM (Huang, et al., 2011) 

binary profile, BLOSUM62 and PSSM (Hwang, et al., 2007) 

Prediction of 

RNA-binding 

sites  

PSSM, smoothed-PSSM (Cheng, et al., 2008) 

physicochemical descriptors, hydrophobicity, relative accessible surface 

areas, secondary structures, PSSM, and side-chain environment 

(Liu, et al., 2010) 

PSSM (Kumar, et al., 2008) 

PSSM, residue interface propensity, predicted residue accessibility values, 

and residue hydrophobicity scores 

(Murakami, et al., 2010) 

biochemical property features, and PSSM (Wang, et al., 2010) 

PSSM, smoothed-PSSM, and sequence-derived descriptors (Walia, et al., 2012) 

Protein 

function 

prediction 

AB-PSSM, RPM-PSSM, and physicochemical property features (Jeong, et al., 2011) 

PSSM, UniProtKB/Swiss-Prot text mining, amino acid trigram mining, 

FFPRED, orthologous groups, profile-profile comparison, and functional 

space 

(Cozzetto, et al., 2013) 

GO annotations, and PSSM (Wass and Sternberg, 2008) 

*PSSM denotes that the original PSSM profile was directly used in the corresponding paper. 
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Fig. S1. The architecture of the POSSUM web server. 

 

The architecture of the POSSUM server is illustrated in Fig. S1. There are two main components 

to this architecture: Client Web Interface and Server Backend. These two components can 

interactively exchange the data of submitted jobs, and inform each other. Please refer to the main 

text of the manuscript for a detailed description and discussion. 

The POSSUM server is currently configured and hosted on an extensible cloud computing 

facility provided by the e-Research Centre at Monash University, equipped with 4 cores, 16GB 

memory and a 1TB hard disk. Importantly, this configuration can be readily expanded and 

upgraded in accordance with the increasing user demand of the webserver. 
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Fig. S2. An example of the user interface of the POSSUM server: (A) Webpage displaying 

users’ submission options; (B) Webpage summarizing the submitted information; (C) Webpage 

listing status of all submitted jobs, and (D) The result page containing the original PSSM files 

and calculated descriptors by POSSUM, as well as the links for downloading the corresponding 

PSSM-based feature files. 
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Fig. S3. Workflow of the POSSUM server. 

 

The workflow of the POSSUM server is displayed in Fig. S3. 
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Fig. S4. Architecture of the POSSUM standalone toolkit. 

 

The architecture of the POSSUM standalone toolkit is displayed in Fig. S4. The toolkit was 

implemented in Python (for core function implementation) and Perl (for universal command line 

interface). The major components of the toolkit are briefly described as follows: 

⚫ Command Line Interface: This module is made available to provide a universal and 

user-friendly command line interface, via which users can effectively interact with 

the toolkit. This module allows users to specify and apply different parameters and it 

invokes the descriptor generating process. 

⚫ PSSM Profile-based Feature Descriptor Generating Module: This module can be 

used to wrap up and output the descriptor files based on the raw descriptor vectors 

(generated by the Matrix Transforming Module) in accordance with the user-

specified parameters. 

⚫ Matrix Transforming Module: This module can be used to transform the PSSM 

matrix (which is abstracted from the original PSSM profile) to generate user-

specified raw descriptor vectors. Various applicable matrix transformation functions 

in groups of row transformations, column transformations, and mixture of row and 

column transformations are available within this module. 

⚫ PSSM Profile Formatting Module: This module can be used to abstract the PSSM 

matrix from the PSSM profile. 
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⚫ PSSM Profile Index Constructing Module: This module is a fundamental part of the 

program that scans the FASTA sequences and the PSSM profile folder to build a 

hash map for each query sequence and its corresponding PSSM profile. 

⚫ PSSM Profile Loading Module: This module looks up the hash table (built by the 

PSSM Profile Index Constructing Module) to check the availability of the PSSM 

profile for a sequence and loads the corresponding PSSM profile into the memory. 
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Comparison of the computational time of PSSM profile-based feature descriptor 

generation by POSSUM on different uniref databases 

 

Fig. S5. The distribution of submitted sequence lengths. 

 

Next, in order to illustrate the computational power of POSSUM, we randomly selected 50 

sequences from the UniProt database (http://www.uniprot.org/). We subsequently evaluated 

POSSUM server’s CPU computing time for generating PSSM profile-based feature descriptors 

on the three different uniref databases (i.e. uniref50, uniref90 and uniref100). Specifically, we 

submitted 10, 20, 30, 40 and 50 sequences to the POSSUM server to generate all 21 types of 

PSSM profile-based feature descriptors. The distributions of sequence lengths for these tasks, 

their computational time against different uniref databases, and the distributions of the 

computational time over a certain task (generating PSSM profile-based feature descriptors for 50 

sequences on uniref50) are shown in Fig. S5, Fig. S6 and Fig. S7, respectively. 

 

http://www.uniprot.org/
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Fig. S6. Comparisons of the computational time for the POSSUM server to process and generate 

the PSSM profile-based feature descriptors of varying numbers of sequences using three 

different uniref databases (i.e. uniref50, uniref90 and uniref100). The three databases were 

generated based on different sequence identity thresholds. The computational time on the y-axis 

indicates the total computational time for submitted sequences (unit: minute). 

 

Fig. S7. Distribution of the computational time involved in the task of generating all types of 

PSSM profile-based feature descriptors as a whole. The results were obtained over the 50 

randomly selected sequences based on the uniref50 database. 
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Fig. S6 suggests a near linear relationship between the CPU computational time and the number 

of submitted sequences, provided the same uniref database was used. Nevertheless, the 

computational time considerably varied depending on which uniref database was used for the 

same task. Users should keep in mind there is a trade-off between the quality of the PSSM 

profiles generated and computational efficiency, and select which options would best suit their 

practical needs. 

Furthermore, generating a PSSM profile is the most time-consuming step during the entire 

feature descriptor generation process (Fig. S7, left panel), accounting for 96.8% of the 

computing time. In this regard, parallelization of the PSSM profile generation is expected to 

significantly boost the throughput of the POSSUM server. In addition, we also notice that during 

the calculation of PSSM profile-based feature descriptors (Fig. S7, right panel), the tri-gram-

PSSM is the most time-consuming step due to a very large number of features (described as a 

vector in a 8000-dimensional space) required to be generated. 

 

Application of POSSUM-calculated features to the prediction of type IV secretion effectors 

and performance evaluation based on the 10 times of 5-fold cross-validation tests 

To demonstrate the usefulness of PSSM-based features generated by POSSUM, we further 

applied POSSUM features to the prediction of type IV secretion effector proteins and examined 

the performance of machine learning models trained using these features. We employed the 

dataset prepared in (Zou, et al., 2013) as the benchmark dataset for the performance comparison, 

which included 340 type IV effectors and 1132 non-effectors. After removing the sequence 

redundancy, 338 positive and 338 negative samples were finally selected. Based on this dataset, 

all 21 types of feature descriptors were generated using POSSUM. In addition, some well-known 

sequence-based descriptors were used as a reference, such as composition of k-spaced amino 

acid pairs (CKSAAP) (Chen, et al., 2011), amphiphilic pseudo-amino acid composition 

(APAAC), pseudo-amino acid composition (PAAC), and quasi-sequence-order (QSO), which are 

originally proposed in (Chou, 2000; Chou, 2001) and implemented using the protr package 

(Xiao, et al., 2015). 

 

Table S2. The list of performances of various descriptors. 

Descriptors 

groups 

Descriptor SN SP ACC F-value MCC 

Row 

transformation 

AAC-PSSM 0.883±0.007 0.919±0.009 0.901±0.005 0.899±0.005 0.803±0.011 

D-FPSSM 0.829±0.010 0.895±0.008 0.862±0.007 0.856±0.008 0.725±0.014 

smoothed-

PSSM 
0.835±0.005 0.919±0.005 0.877±0.003 0.871±0.003 0.757±0.007 
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AB-PSSM 0.868±0.004 0.925±0.007 0.896±0.005 0.893±0.004 0.795±0.009 

PSSM-

composition 

0.879±0.008 0.908±0.003 0.894±0.004 0.891±0.004 0.789±0.007 

RPM-PSSM 0.866±0.007 0.935±0.008 0.900±0.003 0.896±0.003 0.803±0.007 

S-FPSSM 0.843±0.008 0.923±0.006 0.883±0.005 0.877±0.005 0.769±0.010 

Column 

transformation 

DPC-PSSM 0.873±0.006 0.915±0.006 0.894±0.004 0.891±0.005 0.789±0.009 

k-separated-

bigrams-

PSSM 

0.859±0.007 0.916±0.011 0.888±0.006 0.884±0.006 0.777±0.013 

tri-gram-

PSSM 

0.869±0.007 0.890±0.009 0.880±0.007 0.878±0.007 0.760±0.014 

EEDP 0.878±0.005 0.931±0.007 0.904±0.005 0.901±0.005 0.810±0.010 

TPC 0.904±0.005 0.897±0.007 0.901±0.004 0.901±0.004 0.802±0.007 

Mixed of row 

and column 

transformation 

EDP 0.854±0.005 0.915±0.004 0.884±0.003 0.880±0.004 0.771±0.006 

RPSSM 0.871±0.006 0.922±0.004 0.897±0.003 0.893±0.003 0.794±0.006 

Pse-PSSM 0.874±0.007 0.926±0.006 0.900±0.005 0.897±0.006 0.801±0.011 

DP-PSSM 0.873±0.007 0.933±0.005 0.903±0.004 0.900±0.005 0.808±0.007 

PSSM-AC 0.770±0.008 0.914±0.010 0.842±0.006 0.829±0.006 0.691±0.013 

PSSM-CC 0.815±0.007 0.912±0.007 0.863±0.006 0.855±0.005 0.730±0.011 

Combination 

of above 

descriptors 

AADP-

PSSM 

0.876±0.005 0.912±0.004 0.894±0.004 0.891±0.004 0.789±0.007 

AATP 0.905±0.007 0.902±0.005 0.903±0.005 0.903±0.005 0.807±0.010 

MEDP 0.875±0.006 0.929±0.002 0.902±0.003 0.899±0.004 0.806±0.005 

Sequence-

based 

descriptors 

AAC 0.778±0.008 0.826±0.005 0.802±0.006 0.797±0.006 0.605±0.012 

DPC 0.788±0.010 0.824±0.013 0.806±0.009 0.801±0.009 0.613±0.020 

CKSAAP 0.797±0.011 0.830±0.007 0.814±0.007 0.810±0.008 0.629±0.014 

APAAC 0.766±0.011 0.806±0.017 0.786±0.011 0.781±0.010 0.573±0.022 

PAAC 0.769±0.013 0.805±0.015 0.787±0.008 0.782±0.008 0.575±0.017 
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QSO 0.762±0.006 0.842±0.009 0.802±0.005 0.794±0.005 0.606±0.010 

The rows highlighted by grey are the descriptors achieving MCC values of 0.800 or larger. 

 

 

 

Fig. S8. Prediction performance of type IV secretion effectors using random forest classifiers, 

trained using multiple different feature descriptors generated by POSSUM as input features. The 

performance results were evaluated based on the 10 times randomization tests of 5-fold cross-

validation. (A) ROC curves of random forest classifiers trained with feature descriptors within 

the row-transformation group; (B) ROC curves of random forest classifiers trained with feature 

descriptors within the column-transformation group; (C) ROC curves of random forest classifiers 

trained with feature descriptors within the mixture of row-transformation and column-

transformation group, and (D) ROC curves of random forest classifiers trained with feature 

descriptors by combinations of rest groups. 
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For each type of PSSM-based features, the random forest classifier was trained and validated 

based on the 10-time randomization tests of 5-fold cross-validation. Respective results are shown 

in Table S2 and Fig. S8. 

As can be observed from Table S2, PSSM-based descriptors performed much better when 

compared with sequence-based descriptors in terms of ACC, F-value and MCC scores. These 

results indicate that PSSM descriptors are much more informative, significantly contributing to 

the model performance. On the other hand, the RF classifiers trained using different types of 

PSSM-derived features achieved a varying performance, in terms of ACC (ranging from 0.842 to 

0.904), F-value (ranging from 0.829 to 0.903) and MCC (ranging from 0.691 to 0.810), 

depending on the particular PSSM feature type used for training the RF models. The 

performance discrepancy implies that selection of optimal PSSM features that best suit the 

specific classification task should be exercised with caution. POSSUM is a tool that offers the 

opportunity to do the latter, by allowing interested users to address this technically challenging 

yet important question and meet their specific needs and facilitate their efforts to optimize the 

model performance within a homogenous framework. Statistically quantifying the contribution 

of various PSSM-based features to the prediction performance of the machine learning models is 

a relevant question of interest, as well as combining different feature selection techniques to 

identify a condensed subset of the most important PSSM features that collectively determine the 

model performance. 

Furthermore, and rather surprisingly, certain uncommon (not well known) descriptors such as 

DP-PSSM and EEDP achieved reasonable performances. In contrast, some popular descriptors 

such as PSSM-AC and PSSM-CC performed poorly in this assessment (Fig. S8C). Taken 

together, we recommend that PSSM matrix transformations be a requisite for the application of 

POSSUM-calculated PSSM features to protein class classification and prediction tasks. In 

addition, various PSSM-based descriptors should be comprehensively assessed based on a well-

prepared benchmark dataset for the purpose of identifying the best-performing descriptors. As 

can be seen from Fig. S8D, feature groups based on the combinations of other individual types of 

descriptors achieved a high and stable prediction performance, suggesting that the combinations 

of descriptors are likely to further improve the performance. This can be further validated and 

examined by assessing the performance of different approaches in a real application, e.g. protein 

classification (Nanni, et al., 2014). Nanni et al. reported that models trained based on the fusion 

of PSSM-based features and sequence-derived features could outperform those trained using 

only PSSM features. In summary, the application of PSSM-based features to the prediction of 

bacterial secreted effectors serves as a demonstration of the usefulness of POSSUM, and 

validates the need to develop and make available such tool to the wider research community. 

Finally, it is worth mentioning that bioinformatics applications of the variety of PSSM-based 

feature descriptors that can be calculated by POSSUM need not be restricted to prediction of 

bacterial secretion effector proteins; in fact, these versatile and informative PSSM features can 

be applied to address a wide range of sequence-based classification tasks related to e.g. protein 

sequence analysis, remote homology detection, protein family prediction, protein structure and 

function prediction, in combination with other complementary features. We hope the new 

bioinformatics tool presented in this work, POSSUM, can be adopted as a useful starting point to 

develop more accurate predictors for bioinformatics’ open questions. 
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