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ABSTRACT

Anti-CRISPRs are widespread amongst bacterio-
phage and promote bacteriophage infection by in-
activating the bacterial host’s CRISPR–Cas de-
fence system. Identifying and characterizing anti-
CRISPR proteins opens an avenue to explore
and control CRISPR–Cas machineries for the de-
velopment of new CRISPR–Cas based biotechno-
logical and therapeutic tools. Past studies have
identified anti-CRISPRs in several model phage
genomes, but a challenge exists to comprehen-
sively screen for anti-CRISPRs accurately and ef-
ficiently from genome and metagenome sequence
data. Here, we have developed an ensemble learn-
ing based predictor, PaCRISPR, to accurately iden-
tify anti-CRISPRs from protein datasets derived
from genome and metagenome sequencing projects.
PaCRISPR employs different types of feature recog-
nition united within an ensemble framework. Exten-
sive cross-validation and independent tests show
that PaCRISPR achieves a significantly more accu-
rate performance compared with homology-based
baseline predictors and an existing toolkit. The per-
formance of PaCRISPR was further validated in dis-
covering anti-CRISPRs that were not part of the train-
ing for PaCRISPR, but which were recently demon-
strated to function as anti-CRISPRs for phage in-
fections. Data visualization on anti-CRISPR relation-
ships, highlighting sequence similarity and phylo-
genetic considerations, is part of the output from
the PaCRISPR toolkit, which is freely available at
http://pacrispr.erc.monash.edu/.

INTRODUCTION

Bacteria protect themselves from bacteriophage (phage)
infections through a variety of different mechanisms, in-
cluding the CRISPR–Cas adaptive immune system and
restriction modification systems. To counteract different
CRISPR–Cas systems, phages have evolved protein in-
hibitors known as anti-CRISPRs (1–6). Identification of
novel anti-CRISPR systems promises several downstream
applications, such as gene editing technologies and phage
therapy (5,7). There is a resurgence in interest in discov-
ering and using phages on two fronts: for phage thera-
pies to treat humans with drug-resistant bacterial infec-
tions (8), and for phage-based decontamination in the food-
processing industry (9–11), but our capacity to use phage as
products is hindered by gaps in our knowledge of the fun-
damental biology of how phages interact with their host
bacteria (12). From within the growing number of anti-
CRISPRs (13,14) are those demonstrated to inactivate dif-
ferent types of CRISPR–Cas systems in a diverse number of
bacterial species (4,5,15–21). Given their widespread distri-
bution (Supplementary Figures S1 and S2) and broad speci-
ficity (Supplementary Figures S3 and S4), it is speculated
that for each CRISPR–Cas system there could be a dedi-
cated anti-CRISPR available (5).

Several strategies have been used to identify anti-
CRISPRs (3,5), including bioinformatic analyses such as
the ‘Guilt by association’ (15) or self-targeting method (20),
and functional assays or screens (1,16,18). While these ap-
proaches have successfully identified anti-CRISPRs, these
studies identified only some subsets of anti-CRISPRs and
were highly dependent on prior knowledge of the func-
tional features of an individual phage-host relationship.
Initially, BLAST-based searches to retrieve homologues of
anti-CRISPRs from related phages helped to identify how
widespread some anti-CRISPRs are (15,22). However, con-
sidering that some anti-CRISPRs recently discovered have
no discernible sequence similarity to those currently known,
homology-based methods alone cannot be relied upon to
identify novel anti-CRISPRs types.
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To address this issue, machine learning methods were in-
troduced for more accurate anti-CRISPR predictions. Gus-
sow et al. developed a random forest based model, which
was fed with features, including protein length, whether it
was annotated, and its mean hydrophobicity (doi: https://
doi.org/10.1101/2020.01.23.916767). Using this model, a di-
verse array of anti-CRISPRs were predicted and made pub-
licly accessible. While this warehouse stores many potential
anti-CRISPRs for later experimental confirmation, it does
not allow researchers to perform their own anti-CRISPR
predictions. Eitzinger et al. developed an eXtreme Gradient
Boosting based predictor AcRanker, and fed their model
with features, including amino acid composition (AAC) and
grouped dimer- and trimer-frequency counts based on the
physicochemical properties of these amino acids (23). Ten
candidates predicted by AcRanker led to the discovery of
two previously unknown anti-CRISPRs, which were exper-
imentally validated in the same work (23). The AcRanker
toolkit enables scientists to directly rank potential anti-
CRISPRs for a given phage proteome but doesn’t explic-
itly indicate their prediction score or likelihood of being an
anti-CRISPR. We sought to develop a new, user-friendly
web server with high prediction accuracy, detailed annota-
tion information and graphic visualizations.

Here we present a machine learning based predictor,
PaCRISPR, to efficiently and accurately identify anti-
CRISPRs based on protein sequences. PaCRISPR extracts
four types of evolutionary features to mine patterns and
characteristics from an experimentally validated dataset
and trains a set of baseline models with each of the fea-
tures. PaCRISPR then integrates these baseline models
to construct an ensemble model for final predictions. Ex-
tensive cross-validation, independent tests, and case stud-
ies demonstrated that PaCRISPR achieved a significantly
higher performance in predicting anti-CRISPRs, when
compared to the general homology-based baseline predic-
tors and the existing predictor AcRanker. Implementing the
ensemble model as a user-friendly web server, PaCRISPR
not only provides easy-to-use anti-CRISPR prediction, but
also provides interactive visualizations based on sequence
similarity and phylogenetic analysis. The latter specifies the
closest relationship with known anti-CRISPRs for each pre-
dicted anti-CRISPR, which could assist users in assigning
annotations. In this way, PaCRISPR is expected to facilitate
the discovery and characterisation of novel anti-CRISPRs
from phage and bacterial proteomes, therefore promot-
ing the discovery and understanding of principles behind
phage-host interactions and the co-evolution of phages and
bacteria.

MATERIAL AND METHODS

Here we describe the overall workflow of PaCRISPR in
terms of data collection and curation, feature encoding,
model training and integration, model performance evalu-
ation, and toolkit development and usage (Figure 1).

Data collection and curation

To train and test the proposed method, we extracted 488
experimentally validated anti-CRISPRs from the Anti-

CRISPRdb (14) and from the literature (17,22). After re-
moving redundant sequences with more than 70% sequence
identity, we obtained 98 sequences as positive samples in
the training dataset (Supplementary Table S1). Consider-
ing that anti-CRISPRs are small proteins and found from
a limited set of phages, as well as from a limited set of mo-
bile genetic elements (MGEs), we constructed negative sam-
ples in the training dataset with four strict criteria. Neg-
ative sample proteins: (i) must not be known or putative
anti-CRISPRs themselves; (ii) must be isolated from phage
or from bacterial MGEs (which may be known or putative
MGEs), where the given bacterial genera are known to har-
bour anti-CRISPRs; (iii) must have <40% sequence similar-
ity to each other and the 98 positive samples; (iv) must have
lengths that fall in the range between 50 and 350 residues,
which is similar in length to the 98 positive samples. In this
way, we obtained a training dataset with 98 positive and 902
negative samples, and they have similar distributions (Sup-
plementary Figure S5).

To further test the proposed method, 26 newly discov-
ered, highly distinct anti-CRISPRs were subsequently col-
lected from emerging papers that were recorded in the
unified online anti-CRISPR resource (13). These 26 pos-
itive samples comprised the independent dataset, where
they possess less than 10% similarity against the 98 anti-
CRISPRs in the training dataset, except for two that have
similarities of 21.38% and 56.12% (Supplementary Table
S2). We then collected 260 non-anti-CRISPRs using simi-
lar criteria to the selection of negative samples in the train-
ing dataset, which have <40% sequence similarity against
the training dataset and the positive samples in the inde-
pendent dataset. In total, the independent dataset has 26
positive and 260 negative samples (Supplementary Figure
S6).

As the predictor was trained with small proteins, it is
necessary to test its predictive power when identifying
long non-anti-CRISPRs. We constructed two pure negative
datasets through retrieving 266 non-anti-CRISPRs from
phages, and 597 non-anti-CRISPRs from bacterial known
and putative MGEs. Both datasets have less than 40% se-
quence similarity against each other and the above datasets,
and contain only sequences with length >=350 residues.

We additionally used 5 very recently discovered anti-
CRISPRs and a bacterial contig as case studies to validate
the prediction capability of the proposed method in a more
practical scenario (Supplementary Table S3).

Feature encoding

Novel anti-CRISPRs are especially difficult to identify
given that they are significantly diverse, sharing no con-
served sequence or structural motifs (3,4,24). The low se-
quence similarity therefore makes it particularly challeng-
ing to predict anti-CRISPRs from sequence-based features,
which only mine characteristics from protein sequences. In-
stead, extracted from the Position-Specific Scoring Matrix
(PSSM), evolutionary features to some extent track the evo-
lutionary history of proteins and are proposed, therefore, to
learn more informative patterns (25,26). Evolutionary fea-
tures have been widely applied and demonstrated to have
a significant contribution to protein attribute and function
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Figure 1. The methodology of the PaCRISPR server. (A) Ensemble model construction. (B) Multiple-time undersampling to solve the data imbalance
problem. (C) The architecture of the PaCRISPR web server.

predictions, especially to identify those highly evolved pro-
teins without observed signals (25–36).

To generate a PSSM, the PSI-BLAST program (37)
(version blast-2.2.26 in this work) was used to iteratively
(three iterations) search a given protein against a database
(UniRef50) to detect its distantly related homologous pro-
teins above a specified e-value score (0.001) (Figure 1A).
Based on the multiple alignments of those homologous pro-
teins, the generated PSSM combines their underlying con-
servation information and therefore could detect distant se-
quence similarities. For a protein with length of L, its PSSM
is an L × 20 matrix (P = {Pi, j : i = 1 . . . L; j = 1 . . . 20}),
where 20 represents the number of native amino acid types
(Figure 1A). The element Pi, j is a score that indicates the
conservation degree of the j-th amino acid type at the ith po-
sition of the protein sequence. A high score denotes a highly
conserved position, while a low score denotes a weakly con-
served position (25,38).

Here, using the POSSUM toolkit (39), we extracted four
evolutionary features through mining information from
PSSM in different aspects, including PSSM-composition
(33), DPC-PSSM (35), PSSM-AC (36) and RPSSM (40)
(explained below). We also implemented two commonly-
used sequence-based features as baseline features, including
the AAC and dipeptide composition (DPC). AAC counts

the frequencies of residues, while DPC counts the frequen-
cies of dipeptides in a protein sequence.

PSSM-composition. As the rows of a PSSM depend on
the length of its protein sequence, PSSM-composition re-
moves this variability by transforming the variably-sized
PSSM into a fixed-size matrix. By summing up and av-
eraging all rows for each native amino acid type, PSSM-
composition transforms the original PSSM into a 20 × 20
matrix:

Ri = 1
L

L∑
k = 1

rk × δk

subject to{
δk = 1 , pk = ai
δk = 0 , pk �= ai

(i = 1, . . . , 20; k = 1, . . . , L)

where Ri represents the ith row of the resultant matrix, rk de-
notes the kth row of the PSSM, pk denotes the kth residue in
the original protein sequence, and ai denotes the ith native
type of amino acids. Finally, PSSM-composition converts
the 20 × 20 matrix line-by-line into a single 400-dimensional
vector.
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DPC-PSSM. DPC-PSSM transforms the columns of the
PSSM to mine its local sequence-order effect, and generates
a 400-dimentional vector as follows:

DPC − PSSM = (y1,1, . . . , y1,20, y2,1, . . . , y2,20, . . . , y20,1, . . . , y20,20)T

subject to

yi, j = 1
L − 1

L−1∑
k = 1

pk,i × pk+1, j (1 ≤ i, j ≤ 20)

where pk,i represents the element at kth row and ith column
of the PSSM.

PSSM-AC. PSSM-AC calculates the correlation between
two elements within the PSSM using the following formu-
las:

PSSM − AC ( j, lg) =
L−lg∑
i=1

(
Pi, j − Pj

) (
Pi+lg, j − Pj

)
L − lg

subject to

Pj =
L∑

i=1

Pi, j

L
, j = 1, . . . , 20

where lg ranges from 1 to LG, and Pi, j represents the ele-
ment at ith row and jth column of the PSSM. As a result,
the number of elements in the PSSM-AC vector amounts
to 20 × LG, with LG<L. In this work, we used the default
value 10 of the LG, and finally generated a 200-dimensional
vector.

RPSSM. RPSSM explores the local sequence order effect
but based on a reduced PSSM. It first generates an L × 10
reduced PSSM by merging some columns of the original
PSSM, which could be represented as follows:

reduced − PSSM = (P1, . . . , P5, . . . , P10)

subject to

P1 = PF +PY+PW
3 , P2 = PM+PL

2 , P3 = PI +PV
2 ,

P4 = PA+PT+PS
3 , P5 = PN+PH

2 , P6 = PQ+PE+PD

3 ,

P7 = PR+PK
2 , P8 = PC, P9 = PG, P10 = PP

where PA, . . . , PV denote the 20 columns in the original
PSSM corresponding to the 20 native types of amino acids.
The reduced PSSM is further transformed into a 10-element
vector:

Ds =
∑L

i=1 (pi,s − ps)2

L

subject to

ps = 1
L

L∑
i = 1

pi,s, s = 1, 2, . . . , 10

where pi,s represents the element at ith row and sth column
of the reduced PSSM. Also, the reduced PSSM could be fur-
ther transformed into a 10 × 10 matrix to explore its local

sequence order effect:

Ds,t = 1
L − 1

L−1∑
i = 1

χi,i+1

subject to

χi,i+1 = (
pi,s − pi,s+pi+1,t

2

)2 + (
pi+1,t − pi,s+pi+1,t

2

)2

= (pi,s−pi+1,t)
2

2 , s, t = 1, 2, . . . , 10.

Finally, we obtained the RPSSM feature in 110 dimen-
sions by combining Ds,t and Ds .

RPSSM = [
D1,1, D1,2, . . . , D10,10, D1, . . . , D10

]

Model construction

To deal with the imbalanced classification problem, for each
of the features, we constructed 10 subsets by combining the
positive samples and the same numbers of randomly se-
lected negative samples from the training datasets (Figure
1B). We accordingly trained 10 classifiers using the support
vector machine (SVM) and integrated them by averaging
their prediction outputs. SVM is widely used to solve binary
classification problems in the field of computational biology
(41). Particularly SVM with a radial basis function kernel
(RBF) has been successfully used for nonlinear biological
sequence classification (29,30). Two parameters affect the
performance of the RBF kernel based SVM. Among them,
Cost controls the cost of misclassification of data training,
and Gamma is a specific parameter of the RBF kernel. In
this study, for each SVM based classifier, the parameters
Cost and Gamma were optimized using a grid search within
the space {2−10,. . . ,210}. In this way, we obtained an ensem-
ble model as the baseline model for each feature (termed
single feature-based model) (30,32). To make full use of dif-
ferent types of evolutionary features, we averaged the pre-
diction scores of their single feature-based models to form
the final ensemble model (Figure 1A).

Performance evaluation

The proposed method was rigorously and extensively val-
idated based on the 5-fold cross-validation test, an ad-
ditional independent test, and prediction capability was
further investigated using case studies. Performance mea-
surements include Sensitivity (SN), Specificity (SP), Accu-
racy (ACC), F-value and Matthews correlation coefficient
(MCC) (42), which are defined as follows:

SN = T P
T P + F N

SP = TN
TN + F P

ACC = T P + TN
T P + F P + TN + F N

F − value = 2 × T P
2T P + F P + F N
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MCC = (T P × TN) − (F N × F P)√
(T P + F N) × (TN + F P) × (T P + F P) × (TN + F N)

where TP, TN, FP and FN denote the numbers of true pos-
itives, true negatives, false positives, and false negatives, re-
spectively. For a predictor, SN and SP measure its power
of identifying positive and negative samples, respectively.
ACC, F-value, and MCC measure its comprehensive ca-
pability of identifying both positive and negative samples.
Besides, the receiver operating characteristic (ROC) curve,
with its AUC (area under the curve) value calculated, was
used to visualize the prediction performance of a predictor.

Server construction

The architecture of the PaCRISPR server consists of two
components: a client web interface and a server backend
(Figure 1C).

The client web interface is responsible for interacting with
users through the input and output displays, and to process
the service logic including the illegal character detection, se-
quence validation and format. The former was implemented
by JSP, CSS, jQuery (https://jquery.com/), Bootstrap (https:
//bootstrapdocs.com/) and their extension packages. Specif-
ically, the sequence similarity was visualized by BlasterJS
(43), and the phylogenetic tree was presented using js-
PhyloSVG (44).The latter was implemented by the JAVA
(https://www.java.com/) server development suite, including
Struts 2 (https://struts.apache.org/) and Hibernate (https:
//hibernate.org/).

The server backend is responsible for executing the whole
prediction process, including encoding features, making
predictions, and generating visualize-ready data. The pre-
diction program was written in R language (https://www.
r-project.org/) dependent on the e1071 package for SVM
modelling (https://CRAN.R-project.org/package=e1071).
The BLAST program (version 2.8.1+) (45) was used to
search against the known anti-CRISPRs for each predicted
anti-CRISPR, and to record regions of their similarities for
sequence similarity visualization. The MAFFT toolkit (46)
was used to generate multiple alignment results between
each predicted anti-CRISPR and the known anti-CRISPRs
for phylogenetic tree visualization. A Perl CGI (https://
metacpan.org/pod/CGI) program was written to string to-
gether these steps within a single thread.

The client web interface interacts with the server back-
end through a fast and lightweight queueing system, im-
plemented using the Gearman framework (http://gearman.
org/). The client web interface simply puts the user’s sub-
missions (each of them as a job) into the queueing sys-
tem, where the Perl idle threads, maintained in a daemon
thread pool with customizable size, pull and execute the
jobs. During the whole process, the MySQL database (https:
//www.mysql.com/) is used to store intermediate and final
results, as well as synchronize messages between the client
web interface and the server backend. In this way, the ar-
chitecture brings better user experience by decoupling the
client web interface that requires prompt response speed
and the server backend that handles time-consuming jobs.
This also makes the architecture amenable for expansions
to add new computational facilities to meet the increas-

ing demand in predicting ever accumulating genome-scale
data.

RESULTS

Prediction performance evaluation and comparison

We evaluated and compared the proposed method with
its single evolutionary feature-based models, and two ad-
ditional single sequence-based models using 5-fold cross-
validation and independent tests. All 5-fold cross-validation
tests were repeated based on N balanced training datasets
(N = 10 in this work), and subsequently averaged as the final
performance results. Similarly, all independent tests were
conducted 10 times, each of which was executed based on
a balanced independent dataset comprised of the 26 inde-
pendent positive samples and 26 randomly chosen nega-
tive samples. All models adopted a default cut-off thresh-
old of 0.5 to keep the balance of sensitivity and speci-
ficity. The final ensemble model of the PaCRISPR toolkit
was obtained through integrating the four single evolution-
ary feature-based models. The PaCRISPR toolkit was ad-
ditionally benchmarked with two homology-based base-
line predictors and the AcRanker toolkit (http://acranker.
pythonanywhere.com/) (23) using the independent dataset
(Figure 2, Supplementary Figures S7–S9, and Tables S4–
S8). The BLAST-based predictor was implemented based
on the BLAST+ software (45). Each of query proteins was
searched against positive samples in the training dataset
with an E-value of 0.001 and predicted to be positive if there
was a hit. The hidden Markov model (HMM)-based predic-
tor was implemented based on the HMMER toolkit (47).
The cut-off threshold of the AcRanker output was set to
–5, optimized based on the independent dataset. A query
protein with a prediction score of greater than –5 will be
regarded as an anti-CRISPR.

In both test cases, similar observations were obtained
(Figure 2A, B, Supplementary Tables S4–S6 and Fig-
ures S7–S8): (i) Models trained with evolutionary features
achieved obviously superior performance in predicting
anti-CRISPRs, as compared with another two sequence-
based models. This situation commonly exists when pre-
dicting proteins that lack conserved domains or signals
(28–30,32,33). (ii) Single feature-based models could not
achieve stable prediction performance. The RPSSM-based
model, with the best performance on the 5-fold cross-
validation test (Figure 2A and Supplementary Table S4),
reached the bottom of the PSSM-based models on the in-
dependent test (Figure 2B and Supplementary Table S5).
In contrast, the worst model among PSSM-based models
on the 5-fold cross-validation test (Figure 2A and Supple-
mentary Table S4), i.e. PSSM-AC-based model, achieved
the best prediction performance on the independent test
(Figure 2B and Supplementary Table S5). (iii) The final
ensemble model achieved a more stable and accurate pre-
diction performance when compared to its single PSSM-
based models on both 5-fold cross-validation and indepen-
dent tests (Figure 2A, B, Supplementary Tables S4-S6 and
Figures S7-S8). The highest ACC, F-value, MCC and AUC
values reflect its comprehensive predictive power, while a
balance of SN and SP (also the highest compared with oth-
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Figure 2. Performance evaluation and comparison. (A) Performance comparison between single feature-based models and the ensemble model based on
the 5-fold cross-validation test. (B) Performance comparison between single feature-based models and the ensemble model based on the independent test.
(C) Performance comparison between the PaCRISPR toolkit, homology-based baseline predictors and the AcRanker toolkit. (D) Sequence similarity
network (SSN) based on the 98 anti-CRISPRs in the training dataset and 5 case study anti-CRISPRs. The SSN file was generated by conducting an all-
against-all BLAST using the EFI-EST server (48), and visualized using the Cytoscape software (49). The five case-study anti-CRISPRs are represented by
the final five green dots. (E) Prediction comparison of the case study anti-CRISPRs. (F) Prediction comparison of applications of predictors into a bacterial
contig. Each point denotes the number of anti-CRISPRs retrieved within a specific ranking range. The red and green stars indicate the first ranking ranges
of PaCRISPR and AcRanker where all 33 known anti-CRISPRs were retrieved, respectively.

ers) demonstrated its capability in identifying both positive
and negative samples.

All machine learning based models, including ours and
the AcRanker, obviously outperformed the homology-
based baseline predictors on the independent test, with a
remarkably better recognition capability of anti-CRISPRs
(Figure 2C, Supplementary Tables S6, S7 and Figure S9).
The homology-based baseline predictors made a biased pre-
diction, which tended to predict most of or all the inde-
pendent samples to be negative. As the HMM-based pre-
dictor failed to recognize any anti-CRISPRs in the in-
dependent dataset, we excluded it when calculating those
performance measurements. This demonstrated that sim-

ple sequence similarity-based methods were not sufficient
to recognize anti-CRISPRs, as these proteins possess lit-
tle sequence similarity (Figure 2D) due to rapid evolution.
When compared with AcRanker, PaCRISPR is demonstra-
bly more suitable for capturing the intrinsic patterns of non-
homologous anti-CRISPRs because it extracts evolution-
ary features rather than relies primarily on sequence-based
features that AcRanker uses.

When predicting long non-anti-CRISPR proteins
from phages and bacterial MGEs, both PaCRISPR and
AcRanker achieved high true negative prediction accu-
racy (Supplementary Table S8). Specifically, PaCRISPR
and AcRanker correctly predict 258 and 265 non-anti-
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CRISPRs out of 266 phage proteins, and 596 and 595
non-anti-CRISPRs out of 597 bacterial proteins. This,
together with the balance of high SN and SP values
on both 5-fold cross-validation and independent tests,
demonstrated the superior performance of PaCRISPR
in identifying anti-CRISPRs from phage and bacterial
proteomes with a low false positive rate.

Case studies

Towards the end of this study, 5 new anti-CRISPR proteins
were discovered, providing perfect case studies to compare
the proposed method with its peers in terms of their general-
ized prediction capabilities. These proteins are significantly
different from all anti-CRISPRs in the training dataset with
less than 10% sequence similarity (Figure 2D and Supple-
mentary Table S3).

Four anti-CRISPRs from AcrIIA16 to AcrIIA19 were
found to inhibit the class II-A CRISPR–Cas systems across
multiple host species (50). No single model except the
PSSM-AC-based model could predict that AcrIIA16 is an
anti-CRISPR, leading to the false prediction of PaCRISPR
in this protein. PaCRISPR successfully identified the re-
maining 3 case study proteins to be anti-CRISPRs (Figure
2E). Among them, the successful hit for AcrIIA18 is direct
evidence of the prediction stability of the proposed method,
given the failure of one singe model to recognize this new
anti-CRISPR.

AcrIII-1 (also known as the DUF1874 protein family) in-
hibits type III CRISPR systems (including both type III-
A and III-B subtypes) and was identified in a range of
viruses and plasmids from archaeal species (51). This makes
AcrIII-1 taxonomically divergent from the anti-CRISPR
proteins relevant in bacterial species and, unlike other anti-
CRISPRs that function on specific CRISPR effector pro-
teins, AcrIII-1 targets cyclic tetra-adenylate (cA4). Despite
these unique differences, our proposed method successfully
predicted it with a score of 0.503 (Figure 2E). Among the
single models, the two trained with PSSM-AC and RPSSM
predicted AcrIII-1 as an anti-CRISPR, while the others
failed. This further highlights the robustness of the final en-
semble model, and illustrates that discoveries are possible
using PaCRISPR.

In summary, PaCRISPR (and its single models trained
with PSSM-AC and RPSSM) successfully identified 4 out
of 5 case study anti-CRISPRs. In contrast, both BLAST-
based and HMM-based predictors failed to predict any
of the newly identified proteins as anti-CRISPRs (data
not shown). Both models rely on sequence similarity-based
comparisons between the query proteins and previously
known anti-CRISPRs, and in the case of each of the
newly identified anti-CRISPR proteins above, the candi-
dates show very low similarities with previously known anti-
CRISPRs. Using the same threshold of –5, as used for
the independent test, AcRanker picked out only AcrIIA17
and AcrIII-1 as anti-CRISPRs. However, the low prediction
scores it gives to these new proteins would lead to a low rank
in the context of genome-scale prediction.

We also sought to provide a sense of the false discov-
ery rate, and indicate how obvious true discoveries would
be in a ranked list from a model dataset. To this end, we

established a model system consisting of a contig (NCBI-
RefSeq: NZ ALTM01000002.1) from the genome sequence
of Streptococcus agalactiae strain GB00548. This contig en-
codes 93 proteins, only one of which is an anti-CRISPR,
the novel AcrIIA21 discovered by AcRanker (23). We then
added 32 known anti-CRISPRs to the contig: the se-
quence for AcrIIA20 (another AcRanker-discovered anti-
CRISPR) and all the 26 independent and five case study
anti-CRISPRs to construct a test set totalling 125 protein
sequences. The 33 known anti-CRISPRs act as markers to
measure the performance of the predictors in a practical
scenario of screening genomic sequence data. The predic-
tion results generated by PaCRISPR and AcRanker were
ranked and listed in Figure 2F and Supplementary Tables
S9-S10.

Compared to AcRanker, PaCRISPR generally ranked
known anti-CRISPRs in higher ranking positions (Sup-
plementary Table S9). For each ranking range (such as
top 10, top 20 and likewise), PaCRISPR retrieved more
anti-CRISPRs (Figure 2F and Supplementary Table S10).
Specially, the lowest-ranking anti-CRISPR (AcrIIA21) pre-
dicted by PaCRISPR stayed in 64th place, while that
(AcrVA4) predicted by AcRanker ranked 94th (Supplemen-
tary Table S9). These observations suggest a lower false pos-
itive rate of PaCRISPR, which would retrieve fewer false
anti-CRISPRs to obtain the same number of genuine anti-
CRISPRs in practical use.

The PaCRISPR server

PaCRISPR is a publicly available and user-friendly web
server for predicting anti-CRISPRs and analysing their
relationships with known anti-CRISPRs (Figure 3A).
PaCRISPR allows users to copy-and-paste or upload
their interested sequences in FASTA format in the input
page (Figure 3B-1). When predicting query proteins, the
PaCRISPR server provides two options in the Usage bar
for different purposes. For normal use, the PaCRISPR
server applies a built-in list of experimentally validated anti-
CRISPRs to filter out the query proteins prior to using its
models to execute the computational prediction. But for
users who want to benchmark and test the prediction per-
formance of the PaCRISPR server, they can disable the
built-in list by selecting the ‘For benchmarking test’ option
to retrieve the prediction scores for all query protein se-
quences. Once submitted, a unique link will be generated to
refer to the job summary page (Figure 3B-2) during the job
execution process. Users could use this link to track their
job execution progress, and access or download their pre-
diction results once completed (Figure 3B-3).

To distinguish between predicted and known anti-
CRISPRs, each of the proteins will be marked with either
an ‘Exp.’ if it has been experimentally validated or ‘Pred.’
with a prediction score. For validated anti-CRISPRs, users
will be provided with a link to the relevant page in either the
Anti-CRISPRdb (14) or the unified online anti-CRISPR re-
source (13) (Figure 3B-3). To facilitate downstream analy-
sis, for each predicted anti-CRISPR, PaCRISPR lists the
most homologous known anti-CRISPRs, charts their align-
ments, and highlights the pair-wise alignment (Figure 3B-
4). The interactive phylogenetic tree can instead illustrate
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Figure 3. Demonstration of the PaCRISPR server. (A) The intuitive graphical workflow. (B) An example to showcase the usage of the PaCRISPR server
from (1) the input page, (2) to the job summary page, (3) to the prediction results and (4–5) interactive visualizations.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/48/W

1/W
348/5847774 by guest on 16 July 2020



W356 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

its relationships to known anti-CRISPRs with the predicted
anti-CRISPR highlighted. Each of known anti-CRISPRs
among the tree is marked with an external link to the Anti-
CRISPRdb or the unified online anti-CRISPR resource,
through which more detailed information could be obtained
(Figure 3B-5).

DISCUSSION

Discovery of new anti-CRISPRs opens an avenue for ma-
nipulating CRISPR–Cas machineries as a tool in gene
editing or gene therapy, and provides new insights into
phage interactions with their bacterial hosts. In this work,
we have presented PaCRISPR, an ensemble and univer-
sal predictor to accurately and efficiently identify anti-
CRISPRs from genome- and metagenome-derived se-
quence data. PaCRISPR aims at mining and extracting
distinctive patterns and characteristics from known anti-
CRISPRs by incorporating multiple evolutionary features
within an ensemble framework. Compared with sequence-
based features, the evolutionary features were demonstrated
more suitable to predict this type of highly evolutionary
proteins. Having been extensively and rigorously bench-
marked in terms of prediction accuracy and robustness,
PaCRISPR can identify novel anti-CRISPRs and outper-
forms other toolkits with a significant performance im-
provement. PaCRISPR differentiates itself with an ex-
tended interactive environment where users can tentatively
annotate the putative anti-CRISPR based on the sequence
similarity and phylogenetic analysis. It is anticipated that
PaCRISPR could serve as a useful preliminary screening
toolkit to identify potential anti-CRISPRs, and therefore
expedite the discovery of novel anti-CRISPRs for their sub-
sequent experimental validation. To ensure the PaCRISPR
toolkit remains competitive and up-to-date, it will be peri-
odically upgraded as new anti-CRISPRs are identified and
experimentally validated.
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